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Learning Objectives for this Lesson
• By the end of this lesson, you should be prepared to:

• Explain why you might need tests that are larger than unit 
tests

• Explain why you should or shouldn’t use a mock in conjunction 
with these larger tests.

• Explain how large, deployed systems lead to additional testing 
challenges
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• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• "Real" connections may be slow/flaky/disrupted;
• Resources may have changed since test was 

written.
• Environment

• Interactions with OS, locale or other software.
• Human actors

• Ultimately unpredictable.
• Specifications are incomplete, and may 

change
• Large systems -> many behaviors/interactions to 

consider
• Specifications may evolve over time

Large Systems are Hard to Test
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Test doubles can help.
• To create "small" tests that are faster and less flaky

• Example: Testing a unit that processes result of an 
external API call; only interested in testing what 
happens after the external call returns

• When the real thing is unavailable
• Example: Integrating with external vendors

• When testing for unusual or exceptional cases that are 
hard to make happen in practice
• Example: when external service fails in the middle of a 

transaction
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Mocks and fakes can sometimes help.
• Sometimes called a fake, these mocks have an 

implementation of the object being replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of this mock is to avoid 
processes/network/cost, but still perform some 
activities

• Create fakes in Jest with mock.mockImplementation(…)
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Test Doubles Have Weaknesses
• Some failures may occur purely at the integration 

between components:
• The test may assume wrong behavior (wrongly encoded 

by mock)
• Higher fidelity mocks can help, but still just a snapshot of 

the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test double;
• The test is "brittle" because it depends on internal 

behavior of SUT;

• Potential maintenance burden: as SUT evolves, 
mocks must evolve.
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But some bugs are observable only when 
multiple components interact.
• These are usually because one module has 

made incorrect assumptions about some 
other module 

• Unit tests won’t reveal such bugs
• Mocks won’t help, either (since they may 

incorporate our incorrect assumptions)
• So you really need integration tests

7

1 class of 1 program 
running on 1 server

1 program running 
on 1 server

Mork

UnitIntegration



Integration tests may be larger

• Does the presence of 
other jobs on our 
server change the 
behavior of our 
program?

• Does the presence of 
the other servers 
change the behavior 
of our program?
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Some Tests are Enormous
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Google classifies tests by “size”

• “small” = single process
• “medium” = single machine
• “large” = bigger than that.
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"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)



How big is my test?
• Small: run in a single thread, can’t sleep, perform I/O or 

make blocking calls
• Medium: run on single computer, can use 

processes/threads, perform I/O, but only contact 
localhost

• Large: Everything else
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From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind 
of testing we should do?)
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Deployed systems create even more testing 
challenges
• Clients believe “how it is now is right”,

• Not “how the API intended it to be is right”
• Writing thorough test suite is even harder, less useful
• What is a “breaking change”?

• Still: vital to detect breaking changes
• Examples:

• Detailed layout of GUIs
• Side-effects of APIs, particularly under corner-cases
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Snapshot Tests Can Detect GUI Changes
• The first time the test runs, it saves a "snapshot" of 

the rendered GUI
• Subsequent runs will fail if the snapshot changes
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import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
  const tree = renderer
    .create(<Link 
page="http://www.facebook.com">Facebook</Li
nk>)
      .toJSON();
  expect(tree).toMatchSnapshot();
});



Capture/replay can detect breaking changes 
in API endpoints
• Record the API requests and responses that clients 

make
• Test new versions of the API by identifying requests 

that result in different responses ("breaking 
changes")

15https://www.tradeweb.com/our-markets/data--reporting/replay-service/
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Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain why you might need tests that are larger than unit 
tests

• Explain why you should or shouldn’t use a mock in conjunction 
with these larger tests.

• Explain how large, deployed systems lead to additional testing 
challenges
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