
CS 4530: Fundamentals of Software Engineering

Module 12.2: Beyond Unit Testing

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be prepared to:

• Explain why you might need tests that are larger than unit
tests

• Explain why you should or shouldn’t use a mock in conjunction
with these larger tests.

• Explain how large, deployed systems lead to additional testing
challenges

2

• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• "Real" connections may be slow/flaky/disrupted;
• Resources may have changed since test was

written.
• Environment

• Interactions with OS, locale or other software.
• Human actors

• Ultimately unpredictable.
• Specifications are incomplete, and may

change
• Large systems -> many behaviors/interactions to

consider
• Specifications may evolve over time

Large Systems are Hard to Test

3

Test doubles can help.
• To create "small" tests that are faster and less flaky

• Example: Testing a unit that processes result of an
external API call; only interested in testing what
happens after the external call returns

• When the real thing is unavailable
• Example: Integrating with external vendors

• When testing for unusual or exceptional cases that are
hard to make happen in practice
• Example: when external service fails in the middle of a

transaction

4

Mocks and fakes can sometimes help.
• Sometimes called a fake, these mocks have an

implementation of the object being replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of this mock is to avoid
processes/network/cost, but still perform some
activities

• Create fakes in Jest with mock.mockImplementation(…)

5

Fake has
"semi-real

implementation"

Test Doubles Have Weaknesses
• Some failures may occur purely at the integration

between components:
• The test may assume wrong behavior (wrongly encoded

by mock)
• Higher fidelity mocks can help, but still just a snapshot of

the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test double;
• The test is "brittle" because it depends on internal

behavior of SUT;

• Potential maintenance burden: as SUT evolves,
mocks must evolve.

6

We already saw
this in the

preceding lesson

But some bugs are observable only when
multiple components interact.
• These are usually because one module has

made incorrect assumptions about some
other module

• Unit tests won’t reveal such bugs
• Mocks won’t help, either (since they may

incorporate our incorrect assumptions)
• So you really need integration tests

7

1 class of 1 program
running on 1 server

1 program running
on 1 server

Mork

UnitIntegration

Integration tests may be larger

• Does the presence of
other jobs on our
server change the
behavior of our
program?

• Does the presence of
the other servers
change the behavior
of our program?

8

1 class of 1 program
running on 1 server

1 program running
on 1 server

Mork

UnitIntegration

1 web server in a
cluster of

100,000 servers

Some Tests are Enormous

9

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in the
entire Google

ecosystem

Google classifies tests by “size”

• “small” = single process
• “medium” = single machine
• “large” = bigger than that.

10

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in the
entire Google

ecosystem

"Small""Medium"

"Large"

"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)

How big is my test?
• Small: run in a single thread, can’t sleep, perform I/O or

make blocking calls
• Medium: run on single computer, can use

processes/threads, perform I/O, but only contact
localhost

• Large: Everything else

11"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)

From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind
of testing we should do?)

12

Pyramid
Test Pattern

Deployed systems create even more testing
challenges
• Clients believe “how it is now is right”,

• Not “how the API intended it to be is right”
• Writing thorough test suite is even harder, less useful
• What is a “breaking change”?

• Still: vital to detect breaking changes
• Examples:

• Detailed layout of GUIs
• Side-effects of APIs, particularly under corner-cases

13

Snapshot Tests Can Detect GUI Changes
• The first time the test runs, it saves a "snapshot" of

the rendered GUI
• Subsequent runs will fail if the snapshot changes

14

import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
 const tree = renderer
 .create(<Link
page="http://www.facebook.com">Facebook</Li
nk>)
 .toJSON();
 expect(tree).toMatchSnapshot();
});

Capture/replay can detect breaking changes
in API endpoints
• Record the API requests and responses that clients

make
• Test new versions of the API by identifying requests

that result in different responses ("breaking
changes")

15https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Current version
of API

Next version of
API

Clients (created
by many third

parties)

Capture/Replay
Proxy for
Testing

Production traffic

Production traffic

Replay production
traffic for testing

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain why you might need tests that are larger than unit
tests

• Explain why you should or shouldn’t use a mock in conjunction
with these larger tests.

• Explain how large, deployed systems lead to additional testing
challenges

16

	CS 4530: Fundamentals of Software Engineering��Module 12.2: Beyond Unit Testing
	Learning Objectives for this Lesson
	Large Systems are Hard to Test
	Test doubles can help.
	Mocks and fakes can sometimes help.
	Test Doubles Have Weaknesses
	But some bugs are observable only when multiple components interact.
	Integration tests may be larger
	Some Tests are Enormous
	Google classifies tests by “size”
	How big is my test?
	Testing Distribution (How much of each kind of testing we should do?)
	Deployed systems create even more testing challenges
	Snapshot Tests Can Detect GUI Changes
	Capture/replay can detect breaking changes in API endpoints
	Review: Learning Objectives for this Lesson

